Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3178, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326371

RESUMO

MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.


Assuntos
Benzofuranos , Naftoquinonas , Neoplasias , Humanos , Fator de Transcrição STAT3/metabolismo , Neoplasias/metabolismo , Benzofuranos/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Linhagem Celular Tumoral , Mucina-1/genética , Mucina-1/metabolismo
2.
FASEB J ; 38(3): e23460, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315443

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.


Assuntos
Lesões Encefálicas Traumáticas , Extratos do Timo , Humanos , Ratos , Animais , Bovinos , Extratos do Timo/farmacologia , Extratos do Timo/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Neurônios , Neuroglia , Hipocampo , Modelos Animais de Doenças
3.
J Immunother ; 47(3): 77-88, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270462

RESUMO

The chimeric antigen receptor (CAR) T-cell therapy in solid epithelial tumors has been explored, however, with limited success. As much of the preclinical work has relied on xenograft models in immunocompromised animals, the immune-related efficacies and toxicities may have been missed. In this study, we engineered syngeneic murine CAR T cells targeting the tumor form of human mucin-1 (tMUC1) and tested the MUC1 CAR T cells' efficacy and toxicity in the immunocompetent human MUC1-expressing mouse models. The MUC1 CAR T cells significantly eliminated murine pancreatic and breast cancer cell lines in vitro. In vivo, MUC1 CAR T cells significantly slowed the mammary gland tumor progression in the spontaneous PyVMT×MUC1.Tg (MMT) mice, prevented lung metastasis, and prolonged survival. Most importantly, there was minimal short or long-term toxicity with acceptable levels of transient liver toxicity but no kidney toxicity. In addition, the mice did not show any signs of weight loss or other behavioral changes with the treatment. We also report that a single dose of MUC1 CAR T-cell treatment modestly reduced the pancreatic tumor burden in a syngeneic orthotopic model of pancreatic ductal adenocarcinoma given at late stage of an established tumor. Taken together, these findings suggested the further development of tMUC1-targeted CAR T cells as an effective and relatively safe treatment modality for various tMUC1-expressing solid tumors.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Linfócitos T , Mucina-1/genética , Mucina-1/metabolismo , Imunoterapia Adotiva , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
4.
Transl Res ; 253: 41-56, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36031050

RESUMO

The third leading cause of cancer-related deaths in the United States is pancreatic cancer, more than 95% of which is pancreatic ductal adenocarcinoma (PDA). The incidence rate of PDA nearly matches its mortality rate and the best treatment till date is surgical resection for which only 25% are eligible. Tumor recurrence and metastasis are the main causes of cancer-related mortality. MUC1 is a transmembrane glycoprotein expressed on most epithelial cells. It is overexpressed and aberrantly glycosylated in cancer and is known as tumor-associated MUC1 (tMUC1). More than 80% of PDAs express tMUC1. A monoclonal antibody called TAB004 has been developed specifically against human tMUC1 extracellular domain. We report that treatment with TAB004 significantly reduced the colony forming potential of multiple PDA cell lines while sparing normal pancreatic epithelial cell line. Binding of TAB004 to tMUC1 compromised desmosomal integrity, induced ER stress and anoikis in PDA cells. The mechanisms underlying TAB004's antitumor effects were found to be reduced activation of the EGFR-PI3K signaling pathway, and degradation of tMUC1, thereby reducing expression of its transcriptional targets, c-Src and c-Myc. This reduction in oncogenic signaling triggered anoikis as indicated by reduced expression of antiapoptotic proteins, PTRH2 and BCL2. TAB004 treatment slowed the growth of PDA xenograft compared to IgG control and enhanced survival of mice when combined with 5-FU. Since TAB004 significantly reduced colony forming potential and triggered anoikis in the PDA cells, we suggest that it could be used as a potential prophylactic agent to curb tumor relapse after surgery, prevent metastasis and help increase the efficacy of chemotherapeutic agents.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Anoikis , Fosfatidilinositol 3-Quinases/uso terapêutico , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Mucina-1/metabolismo , Mucina-1/uso terapêutico , Neoplasias Pancreáticas
5.
Front Microbiol ; 13: 960335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466646

RESUMO

Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.

6.
Front Cell Dev Biol ; 10: 821875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237602

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human cancers. Transforming Growth Factor Beta (TGF-ß) is a cytokine that switches from a tumor-suppressor at early stages to a tumor promoter in the late stages of tumor development, by yet unknown mechanisms. Tumor associated MUC1 is aberrantly glycosylated and overexpressed in >80% of PDAs and is associated with poor prognosis. MUC1 expression is found in the early stages of PDA development with subsequent increase in later stages. Analysis of human PDA samples from TCGA database showed significant differences in gene expression and survival profiles between low and high MUC1 samples. Further, high MUC1 expression was found to positively correlate to TGF-ßRII expression and negatively correlate to TGF-ßRI expression in PDA cell lines. We hypothesized that MUC1 overexpression induces TGF-ß mediated non-canonical signaling pathways which is known to be associated with poor prognosis. In this study, we report that MUC1 overexpression in PDA cells directly activates the JNK pathway in response to TGF-ß, and leads to increased cell viability via up-regulation and stabilization of c-Myc. Conversely, in low MUC1 expressing PDA cells, TGF-ß preserves its tumor-suppressive function and inhibits phosphorylation of JNK and stabilization of c-Myc. Knockdown of MUC1 in PDA cells also results in decreased phosphorylation of JNK and c-Myc in response to TGF-ß treatment. Taken together, the results indicate that overexpression of MUC1 plays a significant role in switching the TGF-ß function from a tumor-suppressor to a tumor promoter by directly activating JNK. Lastly, we report that high-MUC1 PDA tumors respond to TGF-ß neutralizing antibody in vivo showing significantly reduced tumor growth while low-MUC1 tumors do not respond to TGF-ß neutralizing antibody further confirming our hypothesis.

7.
BMC Res Notes ; 11(1): 883, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541615

RESUMO

OBJECTIVES: Biomedical research is gaining ground on human disease through many types of "omics", which is leading to increasingly effective treatments and broad applications for precision medicine. The majority of disease treatments still revolve around drugs and biologics. Although food is consumed in much higher quantities, we understand very little about how the human body metabolizes and uses the full range of nutrients, or how these processes affect human health and disease risk. Nutrient composition databases are used by dietitians to describe common consumer food products, but these fail to identify chemicals with the same nomenclature as metabolic pathways in basic life sciences research and with far less precision. Consumer-oriented nutrient compositions often describe generic substances (e.g. Sugars) while scientific reporting is often much more specific (e.g. Dextrose, Fructose, etc.). Integrating these two fields of research presents a difficult challenge for novel applications of precision nutrition. DATA DESCRIPTION: This data set provides a manually curated collection of nutrient identifiers from the USDA's Nutrition Data Bases and maps them to PubChem (a resource for cheminformatics and drug discovery research), biomedical literature records in PubMed using Medical Subject Headings, biological pathways using the Chemical Entities of Biological Interest ontology.


Assuntos
Pesquisa Biomédica , Fenômenos Fisiológicos da Nutrição , Bases de Dados de Compostos Químicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA